

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Aging mode

Methodolog

Validation

Conclusion

Aging model for Meteosat First Generation VIS Band

Ilse Decoster, N. Clerbaux, E. Baudrez, S. Dewitte, A. Ipe, S. Nevens, A. Velazquez Blazquez, J. Cornelis

Royal Meteorological Institute of Belgium (RMIB)
Satellite Application Facility on Climate Monitoring (CM SAF)
Vrije Universiteit Brussel (VUB)

Earth Radiation Budget Workshop 22 - 25 October 2012, GFDL, Princeton, NJ (USA)

Outline

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

IFG programm alibration

Aging mode

Methodolog

Validation

Conclusion

Introduction

MFG programme Calibration

Aging model

Methodology

Time series

Validation

Regional validation IGBP surface type selection Comparison EUMETSAT mode

Conclusions

Timeline Meteosat Satellites: 1977 - 2011

Aging model for MFG VIS band

Ilse Decoster et al.

ntroduction

MFG programme

Aging mod

- MFG carrying narrow band imager MVIRI
- MSG carrying narrow band imager SEVIRI
 + broad band imager GERB

Figure: Operational time around 0° for Meteosat satellites

 \Rightarrow 25 years of MVIRI data at 0° longitude

Meteosat VIS and IR Imager (MVIRI)

Aging model for MFG VIS band

Ilse Decoster et al.

ntroduction

MFG programme

Aging mod

valluatioi

Conclusion

MVIRI: Meteosat Visible and Infra Red Imager

- ▶ 1 image every 30 minutes
- 3 spectral channels: visible (VIS), water vapour (WV), infra red (IR)

Figure: Normalized spectral response curves for MVIRI channels (given here are the curves for Meteosat-7)

Meteosat First Generation (MFG)

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

MFG programme

Aging mod

Methodolo

.

validation

Conclusion

Long data records: climatology

⇒ EUMETSAT created Climate Monitoring Satellite Application Facility (CM SAF) in 1999

Usefulness of

- Fundamental Climate Data Records (FCDRs)
- Thematic Climate Data Records (TCDRs) aerosol, precipitation, albedo, cloud properties, etc.

Global Climate Observing System (GCOS) setting limits on e.g. stability of DRs

⇒ Calibration: good and consistent over entire record!

Calibration of VIS channel

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction
MFG programm
Calibration

Aging mod

Methodolo

Validation

Conclusion

Current EUMETSAT calibration method for VIS band: constantly increasing calibration coefficient in time

Figure: Calibration coefficient Meteosat-7 (Govaerts et al. 2004).

Validation of this method: in-flight change of the spectral response with stronger degradation effect for shorter wavelengths: **spectral darkening**

Spectral darkening

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction MFG program Calibration

Aging mod

Methodolo

Validation

Conclusio

Probable reason of degradation process of the visible channel:

- Instruments in space: outgassing of lightweight molecules (moisture, lubricants, adhesives, etc.)
- Outgassed material condenses onto surface of the mirrors of the instruments
- When material is exposed to UV-radiation from Sun: photodeposition on the mirrors
- On top, energy from Sun changes optical properties of deposited material

<u>Result</u>: stronger absorption in shorter VIS wavelengths than in longer:

spectral darkening

Outline

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

Aging model

Methodolog

validation

Conclusion

Introduction

MFG programme Calibration

Aging model

Methodology

Time series

Validation

Regional validation IGBP surface type selection Comparison EUMETSAT mode

Conclusions

Spectral response function

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

Aging model

Methodolo

Validation

In this work the calibration coefficient was kept constant at the value at launch (unlike the EUMETSAT method) and the **temporal variation of the spectral response** was modeled:

Figure: Spectral response curve of Meteosat-7 with aging correction after several time steps.

Modeled spectral response function

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

Aging model

Methodolog

validation

$$\phi(\lambda, t) = \phi(\lambda, 0) \left(e^{-\alpha t} + \beta \left(1 - e^{-\alpha t} \right) \right) \left(1 + \gamma t \left(\lambda - \lambda_0 \right) \right)$$

► Gray degradation: $e^{-\alpha t} + \beta (1 - e^{-\alpha t})$ α : decay rate of gray degradation β : asymptotic sensitivity when $t \to \infty$

Spectral degradation: $1 + \gamma t (\lambda - \lambda_0)$ γ : decay rate of spectral degradation

Outline

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

Aging mod

Methodology

Results

Validatio

Conclusion

Introduction

MFG programme Calibration

Aging model

Methodology

Time series Results

Validation

Regional validation IGBP surface type selection Comparison EUMETSAT mode

Conclusions

Meteosat-7 data used

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Aging mod

Methodolo

Time series

Validatio

Conclusion

- ▶ Model has been tested using only Meteosat-7 data
- ➤ One image a day is used at noon (12:00 UTC if available, else the one at 11:00 UTC or 13:00 UTC)
- ▶ Data period used is from June 3, 1998 until June 11, 2006

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Aging mod

Methodolo
Time series

Results

Validatio

Conclusion

- ▶ **Value** *v* of original images in digital counts [DC]
- ▶ Radiance $L = C_f \cdot (v O) \quad [W/(m^2 sr)]$ with C_f and O the fixed calibration coefficient and offset (EUMETSAT calibration)
 - = Narrowband Radiance: $L = \int_{VIS} L(\lambda)\phi(\lambda)d\lambda$ with $L(\lambda)$ the spectral radiance at wavelength λ and $\phi(\lambda)$ the spectral response of the instrument
- Narrowband Reflectance $\rho = L / \left(\frac{FSI \cdot cos(\theta_0)}{\pi \cdot d^2} \right)$ with θ_0 the solar zenith angle, d the Sun Earth distance in AU and FSI the Filtered Solar Irradiance

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Methodolo

Time series

Validatio

.

- ▶ **Value** *v* of original images in digital counts [DC]
- ▶ Radiance $L = C_f \cdot (v O)$ $[W/(m^2 sr)]$ with C_f and O the fixed calibration coefficient and offset (EUMETSAT calibration)
 - = Narrowband Radiance: $L = \int_{VIS} L(\lambda)\phi(\lambda)d\lambda$ with $L(\lambda)$ the spectral radiance at wavelength λ and $\phi(\lambda)$ the spectral response of the instrument
- Narrowband Reflectance $\rho = L / \left(\frac{FSI \cdot cos(\theta_0)}{\pi \cdot d^2} \right)$ with θ_0 the solar zenith angle, d the Sun Earth distance in AU and FSI the Filtered Solar Irradiance

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Methodolog

Time series

A / 10 1 ...

vandatio

Conclusion

- ▶ **Value** *v* of original images in digital counts [DC]
- ▶ Radiance $L = C_f \cdot (v O)$ $[W/(m^2 sr)]$ with C_f and O the fixed calibration coefficient and offset (EUMETSAT calibration)
 - = Narrowband Radiance: $L = \int_{\text{VIS}} L(\lambda)\phi(\lambda)d\lambda$ with $L(\lambda)$ the spectral radiance at wavelength λ and $\phi(\lambda)$ the spectral response of the instrument
- Narrowband Reflectance $\rho = L / \left(\frac{FSI \cdot cos(\theta_0)}{\pi \cdot d^2} \right)$ with θ_0 the solar zenith angle, d the Sun Earth distance in AU and FSI the Filtered Solar Irradiance

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

Mathadalar

Time series

Validatio

Conclusion

- ▶ **Value** *v* of original images in digital counts [DC]
- ▶ Radiance $L = C_f \cdot (v O)$ $[W/(m^2 sr)]$ with C_f and O the fixed calibration coefficient and offset (EUMETSAT calibration)
 - = Narrowband Radiance: $L = \int_{\text{VIS}} L(\lambda)\phi(\lambda)d\lambda$ with $L(\lambda)$ the spectral radiance at wavelength λ and $\phi(\lambda)$ the spectral response of the instrument
- Narrowband Reflectance $\rho = L / \left(\frac{FSI \cdot cos(\theta_0)}{\pi \cdot d^2} \right)$ with θ_0 the solar zenith angle, d the Sun Earth distance in AU, and FSI the Filtered Solar Irradiance

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Aging more

Methodolog

Time series

Validatio

Conclusio

▶ Broadband reflectance $\rho_{BB} = a + b \rho$

 \rightarrow simulate spectral radiances $L(\lambda)$ leading to simulated narrowband and broadband radiances:

$$L = \int_{VIS} L(\lambda)\phi(\lambda,0) \left(e^{-\alpha t} + \beta \left(1 - e^{-\alpha t}\right)\right) \left(1 + \gamma t \left(\lambda - \lambda_0\right)\right) d\lambda$$

→ convert to reflectance and compute a and b

ightarrow convert observed reflectance to broad band reflectance using these values

▶ Reflectance ratio $r = \frac{\rho_{BB}}{R(\theta_0,\theta,\psi) \cdot Alb(\theta_0)}$ with R the modeled anisotropy factor, θ_0 the solar zenith angle, θ the viewing zenith angle, ψ the relative azimuth angle and Alb the albedo

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Aging mod

Methodolo

Time series

Validatio

Conclusion

▶ Broadband reflectance $\rho_{BB} = a + b \rho$

$$L = \int_{\text{VIS}} L(\lambda)\phi(\lambda,0) \left(e^{-\alpha t} + \beta \left(1 - e^{-\alpha t}\right)\right) \\ \left(1 + \gamma t \left(\lambda - \lambda_0\right)\right) d\lambda$$

$$L_{BB} = \int_{0-2\mu m} L(\lambda) d\lambda$$

- → convert to reflectance and compute a and b coefficients for different surface types and cloudiness
- → convert observed reflectance to broad band reflectance using these values
- ▶ Reflectance ratio $r = \frac{\rho_{BB}}{R(\theta_0,\theta,\psi) \cdot Alb(\theta_0)}$ with R the modeled anisotropy factor, θ_0 the solar zenith angle, θ the viewing zenith angle, ψ the relative azimuth angle and Alb the albedo

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Aging mod

Methodolog

Time series

Validatio

Conclusion

▶ Broadband reflectance $\rho_{BB} = a + b \rho$

$$L = \int_{\mathsf{VIS}} L(\lambda) \phi(\lambda, 0) \left(e^{-\alpha t} + \beta \left(1 - e^{-\alpha t} \right) \right)$$

$$\left(1 + \gamma t \left(\lambda - \lambda_0 \right) \right) d\lambda$$

$$L_{BB} = \int_{0-2\mu m} L(\lambda) d\lambda$$

- → convert to reflectance and compute a and b coefficients for different surface types and cloudiness
- → convert observed reflectance to broad band reflectance using these values
- ▶ Reflectance ratio $r = \frac{\rho_{BB}}{R(\theta_0,\theta,\psi) \cdot Alb(\theta_0)}$ with R the modeled anisotropy factor, θ_0 the solar zenith angle, θ the viewing zenith angle, ψ the relative azimuth angle and Alb the albedo

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Aging mod

Methodolo

Time series

Validatio

Conclusio

▶ Broadband reflectance $\rho_{BB} = a + b \rho$

$$L = \int_{\mathsf{VIS}} L(\lambda) \phi(\lambda, 0) \left(e^{-\alpha t} + \beta \left(1 - e^{-\alpha t} \right) \right)$$

$$\left(1 + \gamma t \left(\lambda - \lambda_0 \right) \right) d\lambda$$

$$L_{BB} = \int_{0-2\mu m} L(\lambda) d\lambda$$

- → convert to reflectance and compute a and b coefficients for different surface types and cloudiness
- → convert observed reflectance to broad band reflectance using these values
- ▶ Reflectance ratio $r = \frac{\rho_{BB}}{R(\theta_0,\theta,\psi) \cdot Alb(\theta_0)}$ with R the modeled anisotropy factor, θ_0 the solar zenith angle, θ the viewing zenith angle, ψ the relative azimuth angle and Alb the albedo

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

.

- Wethodoloj

Time series

Validatio

Conclusio

▶ Broadband reflectance $\rho_{BB} = a + b \rho$

$$L = \int_{\mathsf{VIS}} L(\lambda) \phi(\lambda, 0) \left(e^{-\alpha t} + \beta \left(1 - e^{-\alpha t} \right) \right)$$

$$\left(1 + \gamma t \left(\lambda - \lambda_0 \right) \right) d\lambda$$

$$L_{BB} = \int_{0-2\mu m} L(\lambda) d\lambda$$

- → convert to reflectance and compute a and b coefficients for different surface types and cloudiness
- → convert observed reflectance to broad band reflectance using these values
- ▶ Reflectance ratio $r = \frac{\rho_{BB}}{R(\theta_0,\theta,\psi) \cdot Alb(\theta_0)}$ with R the modeled anisotropy factor, θ_0 the solar zenith angle, θ the viewing zenith angle, ψ the relative azimuth angle and Alb the albedo

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Δ

.

Time series

Validatio

Conclusion

- ▶ Both cloudy and clear-sky targets
- Clear-sky targets:
 - Need clear-sky images: every 10 days pixel to pixel analysis of series of 30 images before and 30 images leads to clear-sky image (Ipe et al. (2003))
 - ▶ Different scene types used: bright vegetation, dark vegetation, bright desert, dark desert and ocean
- ► Look for **stable sites**:
 - ► stable clear-sky sites have lowest standard deviation in the total series of images
 - stable cloudy sites are chosen amongst the highly convective clouds, so the highest reflectance value

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Aging mod

Time series

Validatio

Conclusion

- Both cloudy and clear-sky targets
- Clear-sky targets:
 - Need clear-sky images: every 10 days pixel to pixel analysis of series of 30 images before and 30 images leads to clear-sky image (Ipe et al. (2003))
 - ▶ Different scene types used: bright vegetation, dark vegetation, bright desert, dark desert and ocean
- ► Look for **stable sites**:
 - ► stable clear-sky sites have lowest standard deviation in the total series of images
 - stable cloudy sites are chosen amongst the highly convective clouds, so the highest reflectance value

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

Aging mod

Methodolog

Time series

Validatio

Conclusion

- Both cloudy and clear-sky targets
- Clear-sky targets:
 - Need clear-sky images: every 10 days pixel to pixel analysis of series of 30 images before and 30 images leads to clear-sky image (lpe et al. (2003))
 - ▶ Different scene types used: bright vegetation, dark vegetation, bright desert, dark desert and ocean
- ► Look for **stable sites**:
 - ► stable clear-sky sites have lowest standard deviation in the total series of images
 - stable cloudy sites are chosen amongst the highly convective clouds, so the highest reflectance va

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

Methodolo

Time series

Validatio

Conclusion

- Both cloudy and clear-sky targets
- Clear-sky targets:
 - ▶ Need clear-sky images: every 10 days pixel to pixel analysis of series of 30 images before and 30 images leads to clear-sky image (lpe et al. (2003))
 - ▶ Different scene types used: bright vegetation, dark vegetation, bright desert, dark desert and ocean
- Look for stable sites:
 - stable clear-sky sites have lowest standard deviation in the total series of images
 - stable cloudy sites are chosen amongst the highly convective clouds, so the highest reflectance values

Creating time series

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Aging mod

Methodolo

Time series

Results

Validatio

Conclusion

▶ Residual seasonal correction

- Averaging of targets according to scene type
 - \Rightarrow 6 time series:

surface	broadband
type	slope ($\%~{ m yr}^{-1}$)
convective clouds	-1.9090 ± 0.0230
ocean	-1.7900 ± 0.0222
dark vegetation	-1.2542 ± 0.0204
bright vegetation	-1.3895 ± 0.0167
dark desert	-1.5328 ± 0.0156
bright desert	-1.6847 ± 0.0149
weighted average	-1.8176

Minimization technique

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Methodolog

Time series

Validatio

Conclusio

Find parameters (α, β, γ) that minimize variance of time series:

- 1. Simulate the spectral radiance $L(\lambda)$ for different surface types and cloudiness
- 2. Set the model parameters (α, β, γ) to an initial value
- 3. Calculate L and L_{BB} with the given parameter values
- 4. Convert the simulated radiances into reflectances
- 5. Do the NB to BB conversion, fitting the *a* and *b* values for these simulated reflectance values
- 6. Use the values for a and b from this conversion to convert the observed reflectance ρ to broadband reflectance ρ_{BB}
- 7. Transform ρ_{BB} to reflectance ratio r

Minimization technique (2)

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

Λ -- i -- -- -- --

Methodolo

Time series

Results

Conclusion

8. Minimize the variance

$$\sum_{i=1}^{6} w_i \left(\frac{1}{N} \left(\sum_{j=1}^{N} r_{ij}^2 - \frac{\left(\sum_{j=1}^{N} r_{ij} \right)^2}{N} \right) \right)$$

using the method of Powell et al. (1964) and using these r values.

9. If the cost function does not lead to the optimal solution, the Powell method returns a new set of (α, β, γ) parameters and the routine goes back to step 3.

Corrected time series Meteosat-7

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

Methodolog

Time series Results

Validatio

Conclusio

surface	broadband
type	slope ($\%~{ m yr}^{-1}$)
convective clouds	-0.0463 ± 0.0181
ocean	-0.0105 ± 0.0166
dark vegetation	-0.0605 ± 0.0190
bright vegetation	0.0030 ± 0.0129
dark desert	0.0758 ± 0.0147
bright desert	0.0623 ± 0.0132
weighted average	-0.0267

parameter	optimal solution	standard deviation
gray decay rate $lpha$	1.1643 / decade	0.1606 / decade
asymptotic sensitivity eta	0.7489	0.0161
spectral decay rate γ	$0.4745\mu\mathrm{m}^{-1}/\mathrm{decade}$	$0.0329~\mu\mathrm{m}^{-1}/\mathrm{decade}$

Outline

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

Aging mod

Methodolo

Validation

Regional validation IGBP surface type selection Comparison EUMETSAT mode

Conclusion

Introduction

MFG programme Calibration

Aging model

Methodology

Time series Results

Validation

Regional validation IGBP surface type selection Comparison EUMETSAT mode

Conclusions

Regional validation

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

Methodolog

Regional validation IGBP surface type

Comparison EUMETSAT mod

Conclusion

Narrowband to broadband conversion before was done using clear-sky simulations for clear-sky targets and convective cloud simulations for the cloudy targets

For validation:

- ▶ allsky simulated spectral radiances $L(\lambda)$ are used to compute a and b values
- ▶ no allsky R and Alb values, so no conversion to reflectance ratio

Regional Validation (2)

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

Mothodolog

Methodolo

Regional validation

IGBP surface type selection
Comparison

Conclusion

Validation done on both original and clear-sky images:

IGBP surface type selection

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Aging model

.........

Validatio

Regional validation IGBP surface type selection

EUMETSAT mo

Conclusion

Instead of grouping targets in 6 groups, the 17 class land cover dataset of IGBP is used

number	name	% of sites	slope (yr^{-1})	χ_{red}
		in FOV		
1	Evrgr. Needleleaf For.	0.505	2.5 . 10 ⁻⁴	$9.35 \cdot 10^{-3}$
2	Evrgr. Broadleaf For.	0.440	$4.0 \cdot 10^{-6}$	$1.40 \cdot 10^{-3}$
3	Decid. Needleleaf For.	0.003	$1.3 \cdot 10^{-4}$	$2.37 \cdot 10^{-2}$
4	Decid. Broadleaf For.	0.250	$1.3 \cdot 10^{-5}$	$1.41.10^{-3}$
5	Mixed Forest	0.146	$1.2 \cdot 10^{-4}$	$2.94 \cdot 10^{-3}$
6	Closed Shrublands	0.763	$-3.0 \cdot 10^{-6}$	$1.04 \cdot 10^{-3}$
7	Open Shrublands	2.874	$3.9 \cdot 10^{-5}$	$9.23 \cdot 10^{-4}$
8	Woody Savannas	4.162	$-1.3 \cdot 10^{-5}$	$1.49 \cdot 10^{-3}$
9	Savannas	5.698	$1.6 \cdot 10^{-5}$	$1.07 \cdot 10^{-3}$
10	Grassland	2.262	$5.4 \cdot 10^{-5}$	$1.42 \cdot 10^{-3}$
11	Permanent Wetlands	0.070	$1.9 \cdot 10^{-4}$	$3.51 \cdot 10^{-3}$
12	Croplands	2.273	$1.2 \cdot 10^{-5}$	$1.77 \cdot 10^{-3}$
13	Urban and Built-up	0.021	$1.4 \cdot 10^{-5}$	$1.64 \cdot 10^{-3}$
14	Cropland Mosaics	4.415	$3.3 \cdot 10^{-5}$	$1.01 \cdot 10^{-3}$
16	Bare Soil and Rocks	9.601	$3.0 \cdot 10^{-5}$	$1.14 \cdot 10^{-3}$
17	Water Bodies	62.26	$-3.0 \cdot 10^{-6}$	$8.57 \cdot 10^{-4}$

Comparison EUMETSAT model

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Aging mor

Methodolo

....

Regional validation

Comparison EUMETSAT model

Conclusion

To compare results, the same 6 time series are corrected using the method of Y. Govaerts

surface	EUMETSAT
type	slope ($\% \ \mathrm{yr}^{-1}$)
convective clouds	-0.2689 ± 0.0263
ocean	-0.7562 ± 0.0238
dark vegetation	0.1219 ± 0.0234
bright vegetation	-0.0139 ± 0.0183
dark desert	-0.0320 ± 0.0165
bright desert	-0.1011 ± 0.0154
weighted average	-0.3044

Outline

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

Aging mod

Methodolog

Validation

Conclusions

Introduction

MFG programme Calibration

Aging model

Methodology

Time series

Validation

Regional validation IGBP surface type selection Comparison EUMETSAT mode

Conclusions

Aging model for MFG VIS band

Ilse Decoster et al.

Introduction

Aging mode

Methodolog

Validation

Conclusions

Paper has been accepted for publication in JAOT (AMS)

A spectral aging model for the Meteosat-7 visible band

I. Decoster *

Royal Meteorological Institute of Belgium, Brussels, Belgium Vrije Universiteit Brussel, Brussels, Belgium

N. Clerbaux, E. Baudrez, S. Dewitte, A. Ipe, S. Nevens and A. Velazouez Blazouez

Royal Meteorological Institute of Belgium, Brussels, Belgium

J. Cornelis

Vrije Universiteit Brussel, Brussels, Belgium

ABSTRACT

Since more than 30 years, the Meteosat satellites are in a geostationary orbit around the Earth. Due to the high temporal frequency of the data and the long time period, this database is an excellent candidate for Fundamental Climate Data Records (FCDRs). One of the prerequisites to create FCDRs is an accurate and stable calibration over the full data period. Due to the presence of contamination on the instrument in space, a degradation of the visible band of the instruments has been observed. Previous work on the Meteosat First Generation satellites, together with results from other spaceborne instruments, lead to the idea that there is a spectral component to this degradation. This paper describes the model that is created to correct the Meteosat-7 VIS channel for these spectral aging effects. The model assumes an exponential temporal decay for the gravel part of the degradation and a linear temporal decay for the wavelength-dependent part. The effect of these two parts of the model is tuned according to three parameters. 253 clearly stable Earth targets with different surface types are used together with deep conventive cloud measurements to fit these parameters. The validation of the model leads to an overall stability of the Meteosac-7 reflected solar radiation data record of about 0.69 Win *2/ decade.

Next steps ...

Aging model for MFG VIS band

Ilse Decoster et al.

Introductio

Aging mod

Methodolog

Validatio

Conclusions

- The model is being applied to rest of MFG, but countering lots of difficulties (volcanic erruptions in data, time series too short to get parameters or do deseasonalization, etc.)
- Getting more data from EUMETSAT, use the ADC, XADC, IODC to extend databases
- Check applications of new model for GERB-like data, aerosols, surface albedo, etc.

Full MFG database will be reprocessed by 2015, using this model to correct for degradation of the VIS channel